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BRIEF SUMMARY OF DYNAMIC TRANSITION THEORY AND
PATTERN FORMATION

Consider a system that is in an equilibrium state which loses its stability
as a control parameter exceeds a critical threshold.

What are the spatial and or spatio-temporal structures of the emergent states?
What is the stability/robustness of these new states?

Philosophy of Dynamic Transition Theory: to search for the complete
set of transition states, often represented by a local attractor.

Three Types of Transitions:

0 λλ

(a) Type-I

0 λλ

(b) Type-II

0 λλ

(c) Type-III
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THE PROBLEM

FIGURE: Kochmieder, 1974.

Rayleigh (1916) was the first to explain Bénard (1900)’s experiments using
linear stability. But there were several discrepancies between the experiments
and his results: the values of the critical temperature gradient and the
wavelength of the pattern did not match. Block (1956) and Pearson (1958)
proposed that the reason was the presence of free surface. On the free
surface, there is surface tension:

σ = σ0(1− γT (T − T0))

Surface tension gradient gives rise to shear stress on the interface which
induces bulk motion when the fluid is viscous known as Marangoni (1871)
effect.
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THE MARANGONI EFFECT

Suppose a volume of liquid moves upward to point 2 due to infinitesimal
perturbation. Since its temperature is higher, the surface tension is slightly
decreased. Hence a flow develops from point 2 to point 1.

Destabilizing Factors: Buoyancy, surface tension.

Stabilizing Factors: Diffusion of heat and momentum
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MATHEMATICAL SETTING

∂u
∂t

+ (u · ∇) u = Pr
(
−∇p + ∆u + Ra θ ~k

)
,

∂θ

∂t
+ (u · ∇) θ = w + ∆θ,

∇ · u = 0,

u (0) = u0, θ (0) = θ0.

(1)

u = (u, v ,w) is the velocity field, θ is the temperature, ~k = (0, 0, 1). Unknowns
represent deviations around the following steady state:

u = 0, T = T0 + (T1 − T0)
x3

h

Pr = ν/κ the Prandtl number,

Ra =
a g (T0 − T1)

κν
h3 the Rayleigh number,

Here g is the gravitational acceleration, ν is the kinematic viscosity, κ is the
thermal diffusivity, T0 is the reference temperature at x3 = 0.
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TOP BOUNDARY CONDITIONS

Let S be parametrized z = d + η(x , y , t). The tangents to the interface are t1,
t2 and the normal is n.

The kinematic condition:

w = u
∂η

∂x
+ v

∂η

∂y
+
∂η

∂t

The normal stress balance

n · T · n = 2H σ

The tangential stress balance

ti · T · n = ti · ∇σ

T is the stress tensor, 2H is the mean curvature of the interface.
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The non-dimensional domain is Ω = (0, L1)× (0, L2)× (0, 1) .
Flat Top Surface (η = 0) :

∂ (u, v)

∂z
+ λ∇H θ = w =

∂θ

∂z
+ Bi θ = 0, at z = 1

Bi ≥ 0, the Biot number

λ =
ξ0γT (T0 − T1)h2

ρ0νκ
> 0, the Marangoni number

Lateral Sides: "slippery" boundary conditions for the velocity, thermally
insulating.

Bottom Surface: u = v = w = θ = 0 at z = 0.
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EIGENVALUE PROBLEM

Unlike pure RB Problem, linear operator is not self adjoint.

Pr (−∇p + ∆u) = βu,
w + ∆θ = βθ,

∇ · u = 0,

(2)

Eigenfunctions

wI = WI (z) cos L−1
1 ixπx cos L−1

2 iyπy ,

θI = ΘI (z) cos L−1
1 ixπx cos L−1

2 iyπy , I = (ix , iy ) ∈ Z× Z.

Let
α2

I = (L−1
1 ix )2π2 + (L−1

2 iy )π2, D =
d
dz
. (3)

UI(z) = −
L−1

1 ixπ

α2
I

DWI(z), VI(z) = −
L−1

2 iyπ

α2
I

DWI(z), (4)

Pr−1β(λ)(D2 − α2)W = (D2 − α2)2W + Raα2Θ,

β(λ)Θ−W = (D2 − α2)Θ
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CRITICAL MARANGONI NUMBER

Set Ra = 0 afterwards. Solving for β = 0:

λc = min
α

8α (α coshα+ Bi sinhα) (α− coshα sinhα)

α3 coshα− sinh3 α
. (5)

α2
I = i2x π

2L−2
1 + i2y π

2L−2
2 , I = (ix , iy )

Pearson (1958): In the horizontally infinite case λc ≈ 79.6 when Bi = 0 with
critical wave number α = 1.99.
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FIGURE: Marginal stability curves at Bi = 0 (dotted), Bi = 5 (dashed),
Bi = 10(continuous).

λc →∞ as Bi →∞ (No instability)



SURFACE TENSION
DRIVEN CONVECTION

DIJKSTRA, SENGUL,
WANG

INTRODUCTION

LINEAR THEORY

MAIN THEOREMS

CONCLUDING
REMARKS

THEOREM

There is a set of critical indices C = {I = (ix , iy ) ∈ Z2
≥0 | αI minimizes (5)}

finite and non-empty such that

β(J,1) (λ) =


< 0 λ < λc

= 0 λ = λc

> 0 λ > λc ,

∀J ∈ C (6)

Reβ(J,k) (λc) < 0 ∀J /∈ C. (7)

Vrentas (2004) proved that the β(J,1), J ∈ C are always real!
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ROLLS, RECTANGLES AND HEXAGONS

FIGURE: Rectangles have wave
indices I=(m,n), m 6= 0, n 6= 0

FIGURE: Rolls have wave indices
I=(0,n), n 6= 0.

When L1
L2

= m
n
√

3
with m, n two positive integers, the vector field xIφI + xJφJ

defines a hexagonal pattern when xI = ±2xJ .

FIGURE: Hexagon structure
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- Scanlon and Segel (1967)...the infinite vertical layer
- Rosenblat, Davis, Homsy (1982)...competition of rolls
- Cloot, Lebon (1984)
- Dauby, Lebon, Colinet, Legros (1993)...Partial results about hexagons
- Dijkstra (1995)...Numerical study in rigid containers
There are numerous other experimental, theoretical and numerical results.
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STATEMENT OF THE MAIN THEOREMS

b2 =
∑

l≥1 and S=(0,0),(0,4iy )

Gs(φ(0,2iy ,1), φ(S,l), φ
∗
(0,2iy ,1))Φl

S .

where Gs(φ1, φ2, φ3) = G(φ1, φ2, φ3) + G(φ2, φ1, φ3) and G is the tri-linear
operator. Φl

S are coefficients which are computable.

1 2 3 4 5 6 7
Pr

-13

-12

-11

-10

b2

FIGURE: The value of b2 for L2 = 3.02 and L1 =
2L2√

3
and Bi = 0.

THEOREM

Assume C = {I = (ix , iy ), J = (0, 2iy )} such that L1
L2

= ix
iy
√

3
, where ix and iy

are two positive integers. Then the system goes a dynamic transition at
λ = λc . The transition is Type-II if b2 > 0 and Type-III if b2 < 0.
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THEOREM (b2 < 0 CASE)
The system undergoes a Type-III transition at λ = λc :

H1H2

yI

yJ

(a) λ < λc

yI

yJ

(b) λ = λc

-R

R

H1

H2

Θ yI

yJ

(c) λ > λc

± Rλ = (yI , yJ ) = ±(0,
√
β(λ)/−b2 ) + O(β(λ)) rolls

Hλi =
β(λ)

a1
(2(−1)i ,−1) + O(β(λ)2), i = 1, 2 hexagons
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THEOREM (b2 < 0 CASE)

I) There is a neighborhood U of φ = 0 in the phase space H ⊂ L2(Ω)4 such
that for any λc < λ < λc + ε with some ε > 0,

U = Uλ1 ∪ U
λ
2 , Uλ1 ∩ U

λ
2 = ∅

lim
λ→λc

lim sup
t→∞

||Sλ(t , ϕ)||H = 0 ∀ϕ ∈ Uλ1 ,

lim sup
t→∞

||Sλ(t , ϕ)||H ≥ δ > 0 ∀ϕ ∈ Uλ2 ,

for some δ > 0. Moreover P(Uλ1 ) and P(Uλ2 ) are sectorial regions given
by:

P(Uλ1 ) = U ∩ {x ∈ R2 | π + θ < arg(x) < 2π − θ},

P(Uλ2 ) = U ∩ {x ∈ R2 | −θ < arg(x) < π + θ},

θ = arctan 1/2 and P is the projection onto the center-unstable space.

II) The system bifurcates to an attractor Σλ which consists of three steady
states Hλ1 ,H

λ
2 ,−Rλ and heteroclinic orbits connecting −Rλ to Hλ1 and

−Rλ to Hλ2 and has basin of attraction Uλ1 .
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THEOREM (b2 > 0 CASE)
The system undergoes a Type-II transition at λ = λc :

-R

R
H1H2

yI

yJ

(d) λ < λc

yI

yJ

(e) λ = λc

H1H2

yI

yJ

(f) λ > λc

FIGURE: Drastic transition.
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SKETCH OF THE PROOF

Consider the reduction of the system on to the center manifold:

φ = yIφI + yJφJ + Φ(yI , yJ )

Solve the adjoint linear system.

Determine the resonant modes S. For I = (Ix , Iy ) and J = (0, 2Iy ):

S = {(0, 0), (2Ix , 0), J, 2I, 2J, I + J, I}

Approximate the center manifold Φ(y , λ) using:

− LλΦ (y , λ) = yIyJ P2G (ψI , ψJ ) + o(2), (8)

where Lλ = Lλ |E2 , E2 is the subspace spanned by the stable modes, P2
is the projection onto E2 and G is the nonlinear operator.

dyI

dt
= β(λ)yI + a1yJ yI + yI(a2y2

I + a3y2
J ) + o(3),

dyJ

dt
= β(λ)yJ + b1y2

I + yJ (b2y2
J + b3y2

I ) + o(3).

(9)

a1 = 4b1, a3 = 2b3, 4a2 = a3 + b2.
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OPEN QUESTIONS

The case of deformable surface (η 6= 0) is still open. Needs a combination
of the dynamic transition theory with numerical methods.

At the onset of convection, αc changes with increasing Marangoni
number. Why???

Can we resolve the uncertainty in the case of Type-II regions?
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SUMMARY OF RESULTS

It is known that without surface tension, we have always Type-I transition
(Ma–Wang, 2004). With surface-tension driven convection, the transition
is Type-II or III. This is the first time we encountered a Type-III transition in
a physically realistic model.

The hexagonal and other patterns are metastable, leading to uncertainty
in pattern selection.

The reduced equations are universal in the sense that they are ubiquitous
in the pattern selection of hexagons. We recently encountered the same
reduced equations in Cahn-Hilliard equation with a nonlocal term (joint
with H. Liu, S. Wang, P. Zhang).

The well-posedeness and the existence of the global attractor of the
problem has also been studied.
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Thank you!
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